
The metric and gravitational mass of interacting charged particles at rest

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1975 J. Phys. A: Math. Gen. 8 863

(http://iopscience.iop.org/0305-4470/8/6/005)

Download details:

IP Address: 171.66.16.88

The article was downloaded on 02/06/2010 at 05:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/8/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 8, No. 6, 1975. Printed in Great Britain. Q 1975 

The metric and gravitational mass of interacting charged 
particles at rest 

Edgar Pechlaner 
Department of Mathematics, Simon Fraser University, Burnaby, British Columbia 
V5A 1S6, Canada 

Received 26 September 1974, in final form 20 January 1975 

Abstract. An axisymmetric static system of charged point particles is investigated in the 
framework of general relativity. The particles are located on the axis of symmetry; the 
Einstein-Maxwell equations are solved in second approximation. Equilibrium is main- 
tained by means of ‘struts’ connecting neighbouring particles. Assumptions are made which 
make the solution unique. The mass of the whole system and the gravitational mass of 
individual particles are defined. 

We find that the change in gravitational mass of an individual particle with charge Q due 
to the presence of the other particles is equal to -4Q4 where 4 is the electric potential pro- 
duced by the remaining particles on the location of the particle. This result, which we expect 
to hold also if the system does not have axial symmetry, should be obtainable from Einstein’s 
linearized theory and the above mentioned assumptions. 

1. The exact equations 

The line element for any axisymmetric electrostatic field can be written in the form 

and the Einstein-Maxwell equations are equivalent to (Majumdar 1947) : 

1 1  
r 2  

A1 I,, + ,Izz +-I, = - K  e-2a(4; + 4;) 

where K = 87q 4 is the electrostatic potential and A is the Laplace operator. All func- 
tions depend on r and z only. Subscripts r and z, with or without comma, denote partial 
derivatives ; eg, 4r = a4/ar,  ,I2,= = a,I,/az, etc. Units are chosen so that the speed of light 
and the gravitational constant are both unity. Except for the appendixes, rational units 
are used. 

The integrand of v in (3) is an exact differential and v is therefore independent of the 
path of integration. We will consider solutions of (l), (2), (3) which correspond to particles 
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on the z axis, It follows then from (3) that v(0, z) is constant between any two neigh- 
bouring particles. We generally will have 

V(0,z) # 0, (4) 

ie, space on such a part of the z axis is not elementary flat. The corresponding stress 
singularity is commonly interpreted (Synge 1964, p 313, Robertson and Noonan 1968) 
as a strut which is required in order to keep the particles at rest. We of course expect 
that the particles will not stay at rest unless restraining forces are applied. The absolute 
magnitude of the restraining force between a particle located at z = zi and the remaining 
particles of a system is given by 

a Iv(0, zi - E) - 40, zi + €)I ( 5 )  

where IEJ  is an arbitrary small number. It is not always possible to distinguish, in the 
restraining force on a particle, an electrostatic and a gravitational component. To split 
the integrand in (3) into two parts, one consisting of all terms containing 4, for example, 
would lead to two integrals whose integrands might not be exact differentials. 

2. The approximated equatiom 

Where space-time is almost flat we will have 161, /AI, IvI << 1, and individual terms on the 
right-hand side of (2) will be much smaller than terms on the left-hand side. To solve (2) 
by a method of successive approximations, we therefore proceed as Das et a1 (1961) and 
write 

4 = $ o + k 4 1 + k 2 4 2 + k 3 4 3 +  . .  
A = Ao+kAl+k2A2+k3;13+ ..., 

where k is a small and dimensionless, but otherwise arbitrary parameter and numerical 
subscripts indicate the order of the correction terms. Each choice fork will give a different 
universe. Substituting (6) into (2) and equating terms with the same power of k gives the 
following sets of equations. 

a 

I) n - r  

where a = 1,2,3,. . . and D, is the coefficient of kc in the Taylor series expansion of 
e-2A. Defining c $ ~  = A. = 0 we need for U = 1 and 2 only Do = 1. The right-hand sides 
of (7) are known at each stage of the approximation. Writing (7) for a = 1 and 2 gives 

Aqjl = 0 ( 8 4  

AAl = 0 (8b) 
and 
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Equations (9) can be solved for arbitrary 91 and I1 satisfying (8). We find 

9 2  = 91Al + 9 2 - h o m ,  (104 

A2 = 2n9: + AZ-hom, (104 
where &-hom and &-hom are solutions of the ‘homogeneous’ equations associated with 
(9), and are allowed to have singularities wherever 41 and Il have singularities. The 
correctness of (10) has been checked by writing known exact solutions of (I), (2), (3) in 
the form (6); see appendix 2 for example. 

Using (6), we can expand the integrand of v in powers of k, and thus obtain the series 

v = k 2 v 2 + k 3 v 3 + k 4 v 4 +  . . .  . (1  1)  

The integrand for each v, is automatically an exact differential. We find 

Thus v2 and v3 are known if 9,, and 1, are known for a = 1 and 2. 

3. A system of n point charges 

We are interested in systems consisting of point particles located on the z axis and there- 
fore take as solution of (8) 

Q i  91 = ( 4 W  I-, 
i Pi 

Mi 
i Pi 

A1 = - c--, 
where 

p’ = r2 + (z- Z J ~ ,  i =  1,2 ,..., n. 
The Q i ,  M i ,  zi are constants; n is the number of particles, with the ith particle located at 
z = zi. The solution (14) has no spherical symmetry even if n = 1 ; but deviations from 
spherical symmetry far away from the singularity are then small and we are then justified 
to call k M 1  and k Q ,  the mass and charge respectively (see appendix 2). We want to study 
systems of particles of the mathematically simplest form and therefore consistently omit 
dipoles or higher multipoles in our expressions for 9 and A. Accordingly we choose 
for (10) 

Bi 
l2 -hom = E-? 

i Pi 

where Ai and Bi are constants. 
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In order to find Ai  we only have to assume that the charge kQi of each particle is 
conserved, ie, independent of the presence or absence of other particles. The charge 
contained in a region of space is a well defined quantity which can be calculated as a 
surface integral (Synge 1964, p 366), and Ai can thus be found. 

To find Bi requires several assumptions, as we are going to show now. At large 
distances from the system of particles, II  approaches the Newtonian potential. Assuming 
bounded zi, we therefore interpret the expression (see appendix 2 for an example) 

where p2 = r2 + z2 as the mass of the system of particles. 

far apart or ‘free’) particles each with charge k Q ;  ie, 
Let us first consider a system consisting of two initially massless (ie, massless when 

n = 2, M, = M ,  = 0, k Q ,  = kQ2 = kQ, z1 = -z2 .  (18) 

It is an experimental fact that the energy required in moving these charges slowly (ie, 
adiabatically) from z = f CO to z = +z,, is equal to (we can ignore the difference 
between the true distance and Izl -z21 ; see (40)-(44)) 

Assuming that the mass equivalent of this energy appears in the mass of the system as 
defined by (17), we have, using (lob) and (14a) that 

n 2  

Each singularity will, because of symmetry, contribute the same share to the mass of the 
system. Equations (16b) and (20) lead then uniquely to 

We now modify (18) by assuming kQ,  = dkQ = d k Q , .  We have, for d # 1, no 
reflectional symmetry any more and therefore need an additional assumption in order 
to find j12-hom. Assuming that a charge dkQ at z2 produces in a neighbourhood of 
(0, zl) a &-hom which is d times that which a charge kQ produces, we find 

If the number of particles is n > 2, we add up &-hom for all possible pairs of particles. 
Thus we get for 

M i  = 0, kQi at zi, i = 1, . . . ,  n, (23) 
that 

where & is the electric potential produced at (0, z i )  by the n -  1 charges k Q , ,  . . . , kQi-  ,, 
kQi+ 1 , .  . . ,  kQn. 
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If we divide our system of n particles arbitrarily into two subsystems, and if we define 
the interaction energy by the distribution 

we find as a consequence of the assumption above (22) that each subsystem contains half 
of the energy of interaction of the two subsystems. This result agrees with the standard 
assumption on the location of the interaction energy in Newtonian gravitational theory 
(Synge 1971). 

Our basic assumption, that the mass equivalent of the electrostatic energy contributes 
to the mass of a system would not be needed if we could solve time-dependent problems 
with point particles. This assumption, which is accepted in classical and quantum 
electrodynamics has also been made in general relativity (see Florides 1962 for a 
discussion of the case of a charged sphere). Florides, however, assumes that the mass 
equivalent is twice the mass equivalent obtained from classical electrostatics ; this would 
give an additional factor 2 on the right-hand sides of (21), (22) and (24). I am, however, 
unwilling to share this assumption for the reason given by Misner and Putnam (1959). 
Appendix 1 presents both alternatives for the case of a charged sphere. 

4. A system of n point charges and one point mass 

We now investigate a system consisting of n +  1 particles, n initially massless charges 
and one uncharged mass: 

M i  = 0, kQi at z i ,  i = 1,. . . , n; kM at zy 

p; = r2  + ( z  - z y ) 2 ,  

Defining 

and following the procedure outlined below (16), we find after a lengthy calculation as 
approximation for 4 : 

It is interesting that this expression at r = 0, z = z y  is finite but discontinuous. From 
(lob), (14a) and (24) we find as approximation for 2 

kAl + k21, = --+-(xx--x kM k2 Q i Q j  1 
PM 87~ i j P i P j  i j # i  Pilzi-zjl 

Let F denote the third-order approximation for the restraining force between the n 
charges and the uncharged mass. Equation ( 5 )  shows that we can find F by integrating 
(12) and (13) over a small semicircle of radius c and centre at (0, zy). Using (5), (28) and 
(29) and taking the limit as goes to zero, we find 

(30) 
In this case, no terms in v2 and v 3  containing #J contribute to F ; we therefore can call F 
the gravitational force acting on the mass kM.  

F = $[k2v2(0, z )+k3v3(0 ,  z)]:=::': = [k3MA2,Z] ,=0 , z=ZM.  

If the mass is far away from the charges, ie, if 

min Izi - zyI >> max Izi - zjl , (31) 
i i . j  
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then 

Equations (32) and (30) yield an expected result, namely that the constraining force F 
between a distant mass kM and a system of initially massless charges corresponds to-ie, 
is the negative of ('action equal and opposite reaction')-the force between a mass kM 
and a mass which is the mass equivalent of the electrostatic energy of the charges. This 
will also be true if the charges and the distant mass are not located on the z axis. 

We get an unexpected result if we locate the mass kM close-but not too close-to 
one of the charges, say kQ, . If Iz,  - zyl satisfies the inequality 

then we find 

where q1 is the electric potential produced at I = 0, z = z ,  by the n -  1 charges kQ2, 
. . . , kQn. This means that the dominant term in the constraining force F corresponds 
to the force between a mass kM and a mass -*kQ1& located at zM and z1 respectively. 
This result will also hold if the charges and the mass are not located on the z axis ; we 
only have to replace in (33) the expressions Izl - zy(  , ( z ,  - zil by the distances between 
kQ, and kM, kQ, and kQi respectively. It is therefore reasonable to call 

- &Q 181 (35) 

the gravitational mass of the charge kQ, . If, as in the case of electrons and protons, the 
charge is initially not massless but has a gravitational mass kM, such that 

then the gravitational mass will be 

kMi -%Qi$i.  (37) 

Asanexamplelet usconsider anelectron, kM, = 2.2 x s,lkQll = 4-6 x s, 
in the electric potential of the earth. We approximate the electric charge of the earth 
by a surface charge of + 3 x s = 
mean radius of earth, and of - 3 x s. 
The potential close to the surface of the earth is then given by 

e (Smith 1963) on a sphere of radius r = 2 x 
e on a sphere of radius R = 2 x + 4  x 

The change in gravitational mass of an electron close to the surface of the earth is 
therefore 

(39) -&Ql& = -+(-4-6 x = -2.3 x S, 

which is about 1 % of the electron's rest mass. 
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5. Discussion 

The main result of this work is contained in $4. The truncated series of (6) defined by 
(28) and (29) are good approximations only where 1411, II,I << 1, which is not the case 
close to the singularities representing particles. The calculation of F in (30) is not affected 
by this. To let the radius c of the semicircle go to zero allows us to put F in a simple 
form; a finite c, corresponding to the radius of the particle gives precisely the same 
value for F. 

The singularities, however, give rise to difficulties in the calculation of distances. 
The distance si,i+ , between the ith and the i+ 1st particle is 

This integral might not exist. We therefore replace the singularities by particles of finite 
size. We simply have to continue 4, I ,  v in such a way across a chosen boundary B of 
the particle that 4, I ,  v and their first partial derivatives are continuous across B and 
stay small inside B (we would have to be more selective in our continuation of 4, 2, v 
if we should desire positive mass density everywhere inside B). Let us take for B of the 
ith particle the ‘sphere’ 

p’ r2 +(z- zi)’ = a’ (41) 

where ai is a constant such that 

11,11,1411 << 1 for pi = a i .  (424 

ai << min()zj - zkl, Izj - zMl). 

We assume, furthermore, that ai satisfies 

(426) 

If we now replace Al(r, z) (similarly for 12,  4,, etc) inside B by, say, 

- r2 - (2 - zJ2] (43) 

we have I l  smooth at B, bounded inside B and 11(0, 0) + 0. In this way we can achieve 
IIkI, lvkl << 1 everywhere and find then from (40) 

S i , i + l  lzi+l-zil. (44) 
Treating particles as singularities might also be the reason why attempts to find expres- 
sions for 43 and I 3  similar to those for Cp2 and I 2  (10) failed. 

We used a particle of mass kM (26), v 3  and F (30) to define the gravitational mass 
of charged particles. We could have used instead, as indicated in appendix 1, 

g4, = -exp 2(kIl + k212) 

and the equations of geodesics (see Rosen 1949). Using the acceleration thus obtained 
as a measure of gravitational mass would give the same result (35). 

Einstein’s linearized theory, applied to the system (23), would give an approximation 
for the metric from the energy-momentum tensor T,, of classical electrostatics. This 
T,, would be quadratic in the charges (ie, electric field strength) and so would the resulting 
metric tensor (see, for example, (A.6) and (A.10)). We find, therefore, that for the system 
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(23), -2k21, of (29) equals 1 +g,, of the linearized theory and our result (35) could 
therefore be obtained from this theory. 

In physical reality we rarely find charges kept at rest by struts. Charges usually 
arrange themselves in such a way that $0, z) = 0. For example, v2(0, 2) = 0 everywhere 
for + Q at z1 = 0, - 4Q at z2  = - z3 z ; a charge in the centre of a symmetric (invariant 
under z 4 - z )  charge distribution needs no support. A small electric field, resulting 
in a small v, does, however, not imply a small electric potential 4. Variations of 4 
between different galaxies might produce observable changes in the gravitational mass 
of electrons. 
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Appendix 1 

The suffixes U, U take the values 1,2, 3 ,4  and a takes the values 1,2, 3. The gravitational 
field of a charged sphere of radius a and charge e is, for r 2 a, given by 

dr2+r2(d02+sin20dq2)- 

Florides, in order to arrive at a physical interpretation of the constant p, makes the 
following assumptions : 

(i) Let m be the 'bare mass' of the uncharged sphere. 
(ii) The density of energy for r 2 a is given by Sd of Mlaller's energy-momentum 

(iii) The Newtonian potential calculated for this energy density and m accelerates 

Comparing the acceleration thus obtained with the acceleration obtained from the 
equations of geodesics for (A.l), Florides obtains 

pseudotensor 9:. 

slow test particles in accordance with Newtonian mechanics. 

e2 
p = m+--. 

a 

A different result is obtained by the following procedure. We use Einstein's linearized 
theory to calculate g,, and compare this g,, with the exact g,, of (A.1). Equating coeffi- 
cients of the same power of r then will lead to our interpretation of p. We do not have 
to equate accelerations or to  calculate other components of the metric tensor. Accelera- 
tion of slow test particles is governed by g,, alone; furthermore, g,, behaves like an 
invariant under transformations of the space-like variables. 

According to Einstein's linearized theory we have, assuming spherical symmetry, 

Ag4,(r) = r- 2(r2g44,r),r = - 16n( T4, - q4,7'3 = 874 Td - T:). 64.3) 

We raise and lower suffixes with 

vu" = q"" = diag(1, 1, 1, - l), 64.4) 
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and the energy-momentum tensor T"" (of electric field+ particle), when expressed in 
Cartesian coordinates x, y, z ,  t, has to satisfy 

TU," = 0 everywhere. (A.5) 
For r 2 a we have from classical electrostatics 

e' 
8nr4' 

4 -  Tq- -c= -- 
Thus for r 2 a, 

2e2 e' constant 
r4 rz I 

Ag44 = -- =2-g44= -1--+ 

At this stage, ie, for T:  of (A.6) only, we have g44,r = 0 for I = a and find therefore at 
this stage constant = 2e2/a. 

We now need some information about T,, for r < a. In agreement with Florides' 
first assumption, we define the mass of the uncharged sphere by 

4x 1; T44rZ dr m. 

To get the corresponding integral for Tt ,  we follow Heitler (1954, p 420) and assume 
that for the electron, including his field 

J-" J-" J-" T4" dx dY dz 

is a four-vector (the energy-momentum vector of the electron). This implies, as Heitler 
shows (in his proof replace (T,,) by T,,) 

J-" I-" SI:, T,, dx dy dz = 0 11, J-" J-" (X, + T,, + TA dx dY dz = 0 

Tzdxdydz = 0*4n =. J-" J-" J-" 
=> 4x J: T;r2 dr = -4n (A.9) 

This integral represents non-Maxwellian stresses (Poincare binding force) which are 
essential for the stability of the electron. Using (A.3), (A.7), (A.8), (A.9) we find 

2m e' e' 
g44 = - 1 +-+---. 

r ar rz 

Comparing this with g,, of (A.l) gives 

e2 
p = m+- 

2u 

(A. 10) 

(A.11) 

We would have obtained Florides' result (A.2) if we would have ignored the contribution 
of (A.9). But to ignore this term would mean that we work with a T,, which does not 
satisfy 

Tu%, = continuous (A. 12) 



872 E Pechlaner 

across any two-space (in our case r = a)  with normal vector n,. Our result (A.11) is 
consistent with the classical theory of the electron (see Rohrlich 1965, p 125, who also 
discusses the structure of the electron). 

Let us now consider two charges connected by a strut as a problem in classical 
electrostatics. Because of the previous discussion, we only have to consider cross-terms 
in T,, (ie, terms containing the electric field of both particles). 

To show that the integral over the Maxwellian stresses is cancelled by the stresses 
in the strut is then easy (Whittaker 1935). 

Appendix 2 

The coordinate transformation which brings the Reissner Nordstr~m metric (A.l) into 
the form (1)  is given by (in this appendix we use R, cp, z ,  t to denote the cylinder coordinates 
of (1)) 

c p =  cp, t = t, 

where 

R: = [ ~ - ( p ~ - e ~ ) ’ ’ ~ ] ~ + R ~  

R: = [ ~ + ( p ~ - e * ) ~ ’ ~ ] ~ +  R2. 
We find 

e 4 =  -- 
r 

We see that, in accordance with (17), 

- lim RA = - lim z,l = p. 
R - m  z - m  

We now expand # and A in a series according to (6). With 

p2 z 2 + R 2 ;  r = p+p+terms Ob2-eZ)  

we find 

and 

p=O,1 ,2 ,3  

(A.14) 

(A.15) 

(A. 16) 

(A. 17) 

(A. 18a) 

P e2 
P 2P2 

A = --+-+terms O(e3-Ppp). (A. 18b) 



Gravitational mass of chargedparticles 873 

Thus 

e 
P P 

k+l  = --, k242 = 7 ,  (A.19a) 

(A.19b) 

Equation (10) (with f#)2-hom = A2-hom = 0) is, as expected, satisfied. We furthermore 
conclude that and A 1  of (14) for n = 1 are not inconsistent with spherical symmetry; 
ie, properly chosen higher-order terms can produce a metric with spherical symmetry. 
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